diff --git a/src/scheme/FiniteVolumesDiffusion.hpp b/src/scheme/FiniteVolumesDiffusion.hpp
index c87a0eb3277363d7bf052abd0d3caf3619d1d4b6..434af08acb418cfcff7cdd1df73929f9cd155749 100644
--- a/src/scheme/FiniteVolumesDiffusion.hpp
+++ b/src/scheme/FiniteVolumesDiffusion.hpp
@@ -125,12 +125,12 @@ private:
     */
 
     // k = x
-    //m_Fl(0,0) = -(t/((50./9.)-t*t))*xr[0][0];
-    //m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*xr[m_mesh.numberOfFaces()-1][0];
+    m_Fl(0,0) = -(t/((50./9.)-t*t))*xr[0][0];
+    m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*xr[m_mesh.numberOfFaces()-1][0];
     
     // k = 0.5
-    m_Fl(0,0) = -(t/((50./9.)-t*t))*0.5;
-    m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*0.5;
+    //m_Fl(0,0) = -(t/((50./9.)-t*t))*0.5;
+    //m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*0.5;
     
     return m_Fl ;
   }
@@ -327,11 +327,11 @@ public:
 	//uj[j] += std::exp(-t)*(dt*inv_mj[j])*Vj(j)*Sj(j) + (dt*inv_mj[j]) * momentum_fluxes; // test avec k non constant
 
 	// ajout second membre pour kidder (k = 0.5)
-	Ej[j] -= (dt*inv_mj[j])*Vj(j)*((0.5*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
+	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((0.5*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
 
 	// ajout second membre pour kidder (k = x)
-	//uj[j][0] += (dt*inv_mj[j])*Vj(j)*(t/((50./9.)-t*t)); 
-	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
+	uj[j][0] += (dt*inv_mj[j])*Vj(j)*(t/((50./9.)-t*t)); 
+	Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
 
       });
 
diff --git a/src/scheme/FiniteVolumesEulerUnknowns.hpp b/src/scheme/FiniteVolumesEulerUnknowns.hpp
index 8804ce335a056de003f78404a6c708beee60fa1e..a59021ecb3155e0ec5c9e2264a0a987dd7a61bfb 100644
--- a/src/scheme/FiniteVolumesEulerUnknowns.hpp
+++ b/src/scheme/FiniteVolumesEulerUnknowns.hpp
@@ -236,8 +236,8 @@ public:
       });
 
     Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
-  	//m_kj[j] =  xj[j][0];
-	m_kj[j] = 0.5;
+  	m_kj[j] =  xj[j][0];
+	//m_kj[j] = 0.5;
       });
 
      // Conditions aux bords de Dirichlet sur u et k