diff --git a/src/main.cpp b/src/main.cpp
index 6a13f852555a70d24c520a36f1d624644bc9118c..2ad92a3662695c980356ef8c8a5a286e69466eff 100644
--- a/src/main.cpp
+++ b/src/main.cpp
@@ -265,12 +265,12 @@ int main(int argc, char *argv[])
       
       // ETAPE 1 DU SPLITTING - EULER
       
-      double dt_euler = 0.2*acoustic_solver.acoustic_dt(Vj, cj);
+      double dt_euler = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
 
       if (t+dt_euler > tmax) {
 	dt_euler = tmax-t;
       }
-      //acoustic_solver.computeNextStep(t,dt_euler, unknowns);
+      acoustic_solver.computeNextStep(t,dt_euler, unknowns);
       t += dt_euler;
       
       // ETAPE 2 DU SPLITTING - DIFFUSION
@@ -280,7 +280,6 @@ int main(int argc, char *argv[])
       
       if (dt_euler <= dt_diff) {
 	dt_diff = dt_euler;
-	acoustic_solver.computeNextStep(t_diff,dt_diff, unknowns);
 	finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns);
       } else {
 	while (t > t_diff) {
@@ -288,7 +287,6 @@ int main(int argc, char *argv[])
 	  if (t_diff+dt_diff > t) {
 	    dt_diff = t-t_diff;
 	  }
-	  acoustic_solver.computeNextStep(t_diff,dt_diff, unknowns);
 	  finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns);
 	  t_diff += dt_diff;
 	}
diff --git a/src/scheme/FiniteVolumesDiffusion.hpp b/src/scheme/FiniteVolumesDiffusion.hpp
index 27fa0515f624197b75e14a3f1d6d0118c4e0589a..d22213b63462a1773846327bc235bf96b5efbd08 100644
--- a/src/scheme/FiniteVolumesDiffusion.hpp
+++ b/src/scheme/FiniteVolumesDiffusion.hpp
@@ -476,7 +476,7 @@ public:
 	// ajout second membre pour kidder (k = x)
 	uj[j][0] += (dt*inv_mj[j])*Vj(j)*(t/((50./9.)-t*t)); 
 	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))+(0.2*3.)/(50.*h*h*h*h));
-	Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))+(6*xj[j][0]+3.)/(100*(1-t*t/(50/9))*(1-t*t/(50/9))));
+	Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))+(6*xj[j][0]+3.)/(100*h*h*h*h));
       });
 
     // Calcul de e par la formule e = E-0.5 u^2