From 70a7e28769561b07a7258af64d48d72cfcb8f6e3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?St=C3=A9phane=20Del=20Pino?= <stephane.delpino44@gmail.com> Date: Fri, 16 Apr 2021 17:06:11 +0200 Subject: [PATCH] Plug VectorDiamondScheme to the language Still remains to be validated and to be cleaned-up --- src/language/modules/SchemeModule.cpp | 21 + src/scheme/CMakeLists.txt | 3 +- src/scheme/VectorDiamondScheme.cpp | 977 ++++++++++++++++++++++++++ src/scheme/VectorDiamondScheme.hpp | 26 + 4 files changed, 1026 insertions(+), 1 deletion(-) create mode 100644 src/scheme/VectorDiamondScheme.cpp diff --git a/src/language/modules/SchemeModule.cpp b/src/language/modules/SchemeModule.cpp index 523ad8729..232f5b18f 100644 --- a/src/language/modules/SchemeModule.cpp +++ b/src/language/modules/SchemeModule.cpp @@ -29,6 +29,7 @@ #include <scheme/NumberedBoundaryDescriptor.hpp> #include <scheme/ScalarDiamondScheme.hpp> #include <scheme/SymmetryBoundaryConditionDescriptor.hpp> +#include <scheme/VectorDiamondScheme.hpp> #include <scheme/PerfectGas.hpp> @@ -459,6 +460,26 @@ SchemeModule::SchemeModule() )); + this->_addBuiltinFunction("unsteadyelasticity", + std::make_shared<BuiltinFunctionEmbedder< + std::shared_ptr<const IDiscreteFunction>(const std::shared_ptr<const IDiscreteFunction>&, + const std::shared_ptr<const IDiscreteFunction>&, + const std::shared_ptr<const IDiscreteFunction>&, + const std::shared_ptr<const IDiscreteFunction>&, + const std::vector<std::shared_ptr< + const IBoundaryConditionDescriptor>>&)>>( + + [](const std::shared_ptr<const IDiscreteFunction> alpha, + const std::shared_ptr<const IDiscreteFunction> lambda, + const std::shared_ptr<const IDiscreteFunction> mu, + const std::shared_ptr<const IDiscreteFunction> f, + const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& + bc_descriptor_list) -> const std::shared_ptr<const IDiscreteFunction> { + return VectorDiamondSchemeHandler{alpha, lambda, mu, f, bc_descriptor_list}.solution(); + } + + )); + this->_addBuiltinFunction("heat2", std::make_shared<BuiltinFunctionEmbedder< void(std::shared_ptr<const IMesh>, diff --git a/src/scheme/CMakeLists.txt b/src/scheme/CMakeLists.txt index 728c640ed..ab13de8d8 100644 --- a/src/scheme/CMakeLists.txt +++ b/src/scheme/CMakeLists.txt @@ -7,4 +7,5 @@ add_library( DiscreteFunctionUtils.cpp DiscreteFunctionVectorInterpoler.cpp ScalarDiamondScheme.cpp - PerfectGas.cpp) + PerfectGas.cpp + VectorDiamondScheme.cpp) diff --git a/src/scheme/VectorDiamondScheme.cpp b/src/scheme/VectorDiamondScheme.cpp new file mode 100644 index 000000000..92a262cb7 --- /dev/null +++ b/src/scheme/VectorDiamondScheme.cpp @@ -0,0 +1,977 @@ +#include <scheme/VectorDiamondScheme.hpp> + +#include <scheme/DiscreteFunctionP0.hpp> +#include <scheme/DiscreteFunctionUtils.hpp> + +template <size_t Dimension> +class VectorDiamondSchemeHandler::InterpolationWeightsManager +{ + private: + std::shared_ptr<const Mesh<Connectivity<Dimension>>> m_mesh; + FaceValue<const bool> m_primal_face_is_on_boundary; + NodeValue<const bool> m_primal_node_is_on_boundary; + FaceValue<const bool> m_primal_face_is_symmetry; + CellValuePerNode<double> m_w_rj; + FaceValuePerNode<double> m_w_rl; + + public: + InterpolationWeightsManager(std::shared_ptr<const Mesh<Connectivity<Dimension>>> mesh, + FaceValue<const bool> primal_face_is_on_boundary, + NodeValue<const bool> primal_node_is_on_boundary, + FaceValue<const bool> primal_face_is_symmetry) + : m_mesh(mesh), + m_primal_face_is_on_boundary(primal_face_is_on_boundary), + m_primal_node_is_on_boundary(primal_node_is_on_boundary), + m_primal_face_is_symmetry(primal_face_is_symmetry) + {} + ~InterpolationWeightsManager() = default; + CellValuePerNode<double>& + wrj() + { + return m_w_rj; + } + FaceValuePerNode<double>& + wrl() + { + return m_w_rl; + } + void + compute() + { + using MeshDataType = MeshData<Dimension>; + MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*m_mesh); + + const NodeValue<const TinyVector<Dimension>>& xr = m_mesh->xr(); + + const FaceValue<const TinyVector<Dimension>>& xl = mesh_data.xl(); + const CellValue<const TinyVector<Dimension>>& xj = mesh_data.xj(); + const auto& node_to_cell_matrix = m_mesh->connectivity().nodeToCellMatrix(); + const auto& node_to_face_matrix = m_mesh->connectivity().nodeToFaceMatrix(); + const auto& face_to_cell_matrix = m_mesh->connectivity().faceToCellMatrix(); + + CellValuePerNode<double> w_rj{m_mesh->connectivity()}; + FaceValuePerNode<double> w_rl{m_mesh->connectivity()}; + + const NodeValuePerFace<const TinyVector<Dimension>> primal_nlr = mesh_data.nlr(); + auto project_to_face = [&](const TinyVector<Dimension>& x, const FaceId face_id) -> const TinyVector<Dimension> { + TinyVector<Dimension> proj; + const TinyVector<Dimension> nil = primal_nlr(face_id, 0); + proj = x - ((x - xl[face_id]), nil) * nil; + return proj; + }; + + for (size_t i = 0; i < w_rl.numberOfValues(); ++i) { + w_rl[i] = std::numeric_limits<double>::signaling_NaN(); + } + + for (NodeId i_node = 0; i_node < m_mesh->numberOfNodes(); ++i_node) { + Vector<double> b{Dimension + 1}; + b[0] = 1; + for (size_t i = 1; i < Dimension + 1; i++) { + b[i] = xr[i_node][i - 1]; + } + const auto& node_to_cell = node_to_cell_matrix[i_node]; + + if (not m_primal_node_is_on_boundary[i_node]) { + LocalRectangularMatrix<double> A{Dimension + 1, node_to_cell.size()}; + for (size_t j = 0; j < node_to_cell.size(); j++) { + A(0, j) = 1; + } + for (size_t i = 1; i < Dimension + 1; i++) { + for (size_t j = 0; j < node_to_cell.size(); j++) { + const CellId J = node_to_cell[j]; + A(i, j) = xj[J][i - 1]; + } + } + + Vector<double> x{node_to_cell.size()}; + x = 0; + + LeastSquareSolver ls_solver; + ls_solver.solveLocalSystem(A, x, b); + + for (size_t j = 0; j < node_to_cell.size(); j++) { + w_rj(i_node, j) = x[j]; + } + } else { + int nb_face_used = 0; + for (size_t i_face = 0; i_face < node_to_face_matrix[i_node].size(); ++i_face) { + FaceId face_id = node_to_face_matrix[i_node][i_face]; + if (m_primal_face_is_on_boundary[face_id]) { + nb_face_used++; + } + } + LocalRectangularMatrix<double> A{Dimension + 1, node_to_cell.size() + nb_face_used}; + for (size_t j = 0; j < node_to_cell.size() + nb_face_used; j++) { + A(0, j) = 1; + } + for (size_t i = 1; i < Dimension + 1; i++) { + for (size_t j = 0; j < node_to_cell.size(); j++) { + const CellId J = node_to_cell[j]; + A(i, j) = xj[J][i - 1]; + } + } + for (size_t i = 1; i < Dimension + 1; i++) { + int cpt_face = 0; + for (size_t i_face = 0; i_face < node_to_face_matrix[i_node].size(); ++i_face) { + FaceId face_id = node_to_face_matrix[i_node][i_face]; + if (m_primal_face_is_on_boundary[face_id]) { + if (m_primal_face_is_symmetry[face_id]) { + for (size_t j = 0; j < face_to_cell_matrix[face_id].size(); ++j) { + const CellId cell_id = face_to_cell_matrix[face_id][j]; + TinyVector<Dimension> xproj = project_to_face(xj[cell_id], face_id); + A(i, node_to_cell.size() + cpt_face) = xproj[i - 1]; + } + } else { + A(i, node_to_cell.size() + cpt_face) = xl[face_id][i - 1]; + } + cpt_face++; + } + } + } + + Vector<double> x{node_to_cell.size() + nb_face_used}; + x = 0; + + LeastSquareSolver ls_solver; + ls_solver.solveLocalSystem(A, x, b); + + for (size_t j = 0; j < node_to_cell.size(); j++) { + w_rj(i_node, j) = x[j]; + } + int cpt_face = node_to_cell.size(); + for (size_t i_face = 0; i_face < node_to_face_matrix[i_node].size(); ++i_face) { + FaceId face_id = node_to_face_matrix[i_node][i_face]; + if (m_primal_face_is_on_boundary[face_id]) { + w_rl(i_node, i_face) = x[cpt_face++]; + } + } + } + } + m_w_rj = w_rj; + m_w_rl = w_rl; + } +}; + +class VectorDiamondSchemeHandler::IVectorDiamondScheme +{ + public: + virtual std::shared_ptr<const IDiscreteFunction> getSolution() const = 0; + + IVectorDiamondScheme() = default; + virtual ~IVectorDiamondScheme() = default; +}; + +template <size_t Dimension> +class VectorDiamondSchemeHandler::VectorDiamondScheme : public VectorDiamondSchemeHandler::IVectorDiamondScheme +{ + private: + using ConnectivityType = Connectivity<Dimension>; + using MeshType = Mesh<ConnectivityType>; + using MeshDataType = MeshData<Dimension>; + + std::shared_ptr<const DiscreteFunctionP0<Dimension, TinyVector<Dimension>>> m_solution; + + class DirichletBoundaryCondition + { + private: + const Array<const TinyVector<Dimension>> m_value_list; + const Array<const FaceId> m_face_list; + + public: + const Array<const FaceId>& + faceList() const + { + return m_face_list; + } + + const Array<const TinyVector<Dimension>>& + valueList() const + { + return m_value_list; + } + + DirichletBoundaryCondition(const Array<const FaceId>& face_list, + const Array<const TinyVector<Dimension>>& value_list) + : m_value_list{value_list}, m_face_list{face_list} + { + Assert(m_value_list.size() == m_face_list.size()); + } + + ~DirichletBoundaryCondition() = default; + }; + + class NormalStrainBoundaryCondition + { + private: + const Array<const TinyVector<Dimension>> m_value_list; + const Array<const FaceId> m_face_list; + + public: + const Array<const FaceId>& + faceList() const + { + return m_face_list; + } + + const Array<const TinyVector<Dimension>>& + valueList() const + { + return m_value_list; + } + + NormalStrainBoundaryCondition(const Array<const FaceId>& face_list, + const Array<const TinyVector<Dimension>>& value_list) + : m_value_list{value_list}, m_face_list{face_list} + { + Assert(m_value_list.size() == m_face_list.size()); + } + + ~NormalStrainBoundaryCondition() = default; + }; + + class SymmetryBoundaryCondition + { + private: + const Array<const TinyVector<Dimension>> m_value_list; + const Array<const FaceId> m_face_list; + + public: + const Array<const FaceId>& + faceList() const + { + return m_face_list; + } + + public: + SymmetryBoundaryCondition(const Array<const FaceId>& face_list) : m_face_list{face_list} {} + + ~SymmetryBoundaryCondition() = default; + }; + + public: + std::shared_ptr<const IDiscreteFunction> + getSolution() const final + { + return m_solution; + } + + VectorDiamondScheme(const std::shared_ptr<const MeshType>& mesh, + const std::shared_ptr<const DiscreteFunctionP0<Dimension, double>>& alpha, + const std::shared_ptr<const DiscreteFunctionP0<Dimension, double>>& dual_lambda, + const std::shared_ptr<const DiscreteFunctionP0<Dimension, double>>& dual_mu, + const std::shared_ptr<const DiscreteFunctionP0<Dimension, TinyVector<Dimension>>>& f, + const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list) + { + Assert(mesh == alpha->mesh()); + Assert(mesh == f->mesh()); + Assert(dual_lambda->mesh() == dual_mu->mesh()); + if (DiamondDualMeshManager::instance().getDiamondDualMesh(mesh) != dual_mu->mesh()) { + throw NormalError("diffusion coefficient is not defined on the dual mesh!"); + } + + // using ConnectivityType = Connectivity<Dimension>; + // using MeshType = Mesh<ConnectivityType>; + using MeshDataType = MeshData<Dimension>; + + constexpr ItemType FaceType = [] { + if constexpr (Dimension > 1) { + return ItemType::face; + } else { + return ItemType::node; + } + }(); + + using BoundaryCondition = + std::variant<DirichletBoundaryCondition, NormalStrainBoundaryCondition, SymmetryBoundaryCondition>; + + using BoundaryConditionList = std::vector<BoundaryCondition>; + + BoundaryConditionList boundary_condition_list; + + NodeValue<bool> is_dirichlet{mesh->connectivity()}; + is_dirichlet.fill(false); + NodeValue<TinyVector<Dimension>> dirichlet_value{mesh->connectivity()}; + { + TinyVector<Dimension> nan_tiny_vector; + for (size_t i = 0; i < Dimension; ++i) { + nan_tiny_vector[i] = std::numeric_limits<double>::signaling_NaN(); + } + dirichlet_value.fill(nan_tiny_vector); + } + + for (const auto& bc_descriptor : bc_descriptor_list) { + bool is_valid_boundary_condition = true; + + switch (bc_descriptor->type()) { + case IBoundaryConditionDescriptor::Type::symmetry: { + const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor = + dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor); + for (size_t i_ref_face_list = 0; + i_ref_face_list < mesh->connectivity().template numberOfRefItemList<FaceType>(); ++i_ref_face_list) { + const auto& ref_face_list = mesh->connectivity().template refItemList<FaceType>(i_ref_face_list); + const RefId& ref = ref_face_list.refId(); + if (ref == sym_bc_descriptor.boundaryDescriptor()) { + if constexpr (Dimension > 1) { + Array<const FaceId> face_list = ref_face_list.list(); + boundary_condition_list.push_back(SymmetryBoundaryCondition{face_list}); + } else { + throw NotImplementedError("Symmetry conditions are not supported in 1d"); + } + } + } + break; + } + case IBoundaryConditionDescriptor::Type::dirichlet: { + const DirichletBoundaryConditionDescriptor& dirichlet_bc_descriptor = + dynamic_cast<const DirichletBoundaryConditionDescriptor&>(*bc_descriptor); + if (dirichlet_bc_descriptor.name() == "dirichlet") { + for (size_t i_ref_face_list = 0; + i_ref_face_list < mesh->connectivity().template numberOfRefItemList<FaceType>(); ++i_ref_face_list) { + const auto& ref_face_list = mesh->connectivity().template refItemList<FaceType>(i_ref_face_list); + const RefId& ref = ref_face_list.refId(); + if (ref == dirichlet_bc_descriptor.boundaryDescriptor()) { + const FunctionSymbolId g_id = dirichlet_bc_descriptor.rhsSymbolId(); + + if constexpr (Dimension > 1) { + MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*mesh); + + Array<const FaceId> face_list = ref_face_list.list(); + Array<const TinyVector<Dimension>> value_list = InterpolateItemValue<TinyVector<Dimension>( + TinyVector<Dimension>)>::template interpolate<ItemType::face>(g_id, mesh_data.xl(), face_list); + boundary_condition_list.push_back(DirichletBoundaryCondition{face_list, value_list}); + } else { + throw NotImplementedError("Neumann conditions are not supported in 1d"); + } + } + } + } else if (dirichlet_bc_descriptor.name() == "normal_strain") { + for (size_t i_ref_face_list = 0; + i_ref_face_list < mesh->connectivity().template numberOfRefItemList<FaceType>(); ++i_ref_face_list) { + const auto& ref_face_list = mesh->connectivity().template refItemList<FaceType>(i_ref_face_list); + const RefId& ref = ref_face_list.refId(); + if (ref == dirichlet_bc_descriptor.boundaryDescriptor()) { + const FunctionSymbolId g_id = dirichlet_bc_descriptor.rhsSymbolId(); + + if constexpr (Dimension > 1) { + MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*mesh); + + Array<const FaceId> face_list = ref_face_list.list(); + Array<const TinyVector<Dimension>> value_list = InterpolateItemValue<TinyVector<Dimension>( + TinyVector<Dimension>)>::template interpolate<ItemType::face>(g_id, mesh_data.xl(), face_list); + boundary_condition_list.push_back(NormalStrainBoundaryCondition{face_list, value_list}); + } else { + throw NotImplementedError("Neumann conditions are not supported in 1d"); + } + } + } + } else { + is_valid_boundary_condition = false; + } + break; + } + default: { + is_valid_boundary_condition = false; + } + } + if (not is_valid_boundary_condition) { + std::ostringstream error_msg; + error_msg << *bc_descriptor << " is an invalid boundary condition for elasticity equation"; + throw NormalError(error_msg.str()); + } + } + + if constexpr (Dimension > 1) { + const CellValue<const size_t> cell_dof_number = [&] { + CellValue<size_t> compute_cell_dof_number{mesh->connectivity()}; + parallel_for( + mesh->numberOfCells(), PUGS_LAMBDA(CellId cell_id) { compute_cell_dof_number[cell_id] = cell_id; }); + return compute_cell_dof_number; + }(); + size_t number_of_dof = mesh->numberOfCells(); + + const FaceValue<const size_t> face_dof_number = [&] { + FaceValue<size_t> compute_face_dof_number{mesh->connectivity()}; + compute_face_dof_number.fill(std::numeric_limits<size_t>::max()); + for (const auto& boundary_condition : boundary_condition_list) { + std::visit( + [&](auto&& bc) { + using T = std::decay_t<decltype(bc)>; + if constexpr ((std::is_same_v<T, NormalStrainBoundaryCondition>) or + (std::is_same_v<T, SymmetryBoundaryCondition>) or + (std::is_same_v<T, DirichletBoundaryCondition>)) { + const auto& face_list = bc.faceList(); + + for (size_t i_face = 0; i_face < face_list.size(); ++i_face) { + const FaceId face_id = face_list[i_face]; + if (compute_face_dof_number[face_id] != std::numeric_limits<size_t>::max()) { + std::ostringstream os; + os << "The face " << face_id << " is used at least twice for boundary conditions"; + throw NormalError(os.str()); + } else { + compute_face_dof_number[face_id] = number_of_dof++; + } + } + } + }, + boundary_condition); + } + + return compute_face_dof_number; + }(); + + const auto& primal_face_to_node_matrix = mesh->connectivity().faceToNodeMatrix(); + const auto& face_to_cell_matrix = mesh->connectivity().faceToCellMatrix(); + const FaceValue<const bool> primal_face_is_neumann = [&] { + FaceValue<bool> face_is_neumann{mesh->connectivity()}; + face_is_neumann.fill(false); + for (const auto& boundary_condition : boundary_condition_list) { + std::visit( + [&](auto&& bc) { + using T = std::decay_t<decltype(bc)>; + if constexpr ((std::is_same_v<T, NormalStrainBoundaryCondition>)) { + const auto& face_list = bc.faceList(); + + for (size_t i_face = 0; i_face < face_list.size(); ++i_face) { + const FaceId face_id = face_list[i_face]; + face_is_neumann[face_id] = true; + } + } + }, + boundary_condition); + } + + return face_is_neumann; + }(); + + const FaceValue<const bool> primal_face_is_symmetry = [&] { + FaceValue<bool> face_is_symmetry{mesh->connectivity()}; + face_is_symmetry.fill(false); + for (const auto& boundary_condition : boundary_condition_list) { + std::visit( + [&](auto&& bc) { + using T = std::decay_t<decltype(bc)>; + if constexpr ((std::is_same_v<T, SymmetryBoundaryCondition>)) { + const auto& face_list = bc.faceList(); + + for (size_t i_face = 0; i_face < face_list.size(); ++i_face) { + const FaceId face_id = face_list[i_face]; + face_is_symmetry[face_id] = true; + } + } + }, + boundary_condition); + } + + return face_is_symmetry; + }(); + + NodeValue<bool> primal_node_is_on_boundary(mesh->connectivity()); + if (parallel::size() > 1) { + throw NotImplementedError("Calculation of node_is_on_boundary is incorrect"); + } + + primal_node_is_on_boundary.fill(false); + for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) { + if (face_to_cell_matrix[face_id].size() == 1) { + for (size_t i_node = 0; i_node < primal_face_to_node_matrix[face_id].size(); ++i_node) { + NodeId node_id = primal_face_to_node_matrix[face_id][i_node]; + primal_node_is_on_boundary[node_id] = true; + } + } + } + + FaceValue<bool> primal_face_is_on_boundary(mesh->connectivity()); + if (parallel::size() > 1) { + throw NotImplementedError("Calculation of face_is_on_boundary is incorrect"); + } + + primal_face_is_on_boundary.fill(false); + for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) { + if (face_to_cell_matrix[face_id].size() == 1) { + primal_face_is_on_boundary[face_id] = true; + } + } + + FaceValue<bool> primal_face_is_dirichlet(mesh->connectivity()); + if (parallel::size() > 1) { + throw NotImplementedError("Calculation of face_is_neumann is incorrect"); + } + + primal_face_is_dirichlet.fill(false); + for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) { + primal_face_is_dirichlet[face_id] = (primal_face_is_on_boundary[face_id] && + (!primal_face_is_neumann[face_id]) && (!primal_face_is_symmetry[face_id])); + } + + InterpolationWeightsManager iwm(mesh, primal_face_is_on_boundary, primal_node_is_on_boundary, + primal_face_is_symmetry); + iwm.compute(); + CellValuePerNode<double> w_rj = iwm.wrj(); + FaceValuePerNode<double> w_rl = iwm.wrl(); + + MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*mesh); + + const FaceValue<const TinyVector<Dimension>>& xl = mesh_data.xl(); + const CellValue<const TinyVector<Dimension>>& xj = mesh_data.xj(); + // const auto& node_to_cell_matrix = mesh->connectivity().nodeToCellMatrix(); + const auto& node_to_face_matrix = mesh->connectivity().nodeToFaceMatrix(); + const NodeValuePerFace<const TinyVector<Dimension>> primal_nlr = mesh_data.nlr(); + + { + std::shared_ptr diamond_mesh = DiamondDualMeshManager::instance().getDiamondDualMesh(mesh); + + MeshDataType& diamond_mesh_data = MeshDataManager::instance().getMeshData(*diamond_mesh); + + std::shared_ptr mapper = + DiamondDualConnectivityManager::instance().getConnectivityToDiamondDualConnectivityDataMapper( + mesh->connectivity()); + + CellValue<const double> dual_muj = dual_mu->cellValues(); + CellValue<const double> dual_lambdaj = dual_lambda->cellValues(); + + CellValue<const TinyVector<Dimension>> fj = f->cellValues(); + + const CellValue<const double> dual_Vj = diamond_mesh_data.Vj(); + + const FaceValue<const double> mes_l = [&] { + if constexpr (Dimension == 1) { + FaceValue<double> compute_mes_l{mesh->connectivity()}; + compute_mes_l.fill(1); + return compute_mes_l; + } else { + return mesh_data.ll(); + } + }(); + + const CellValue<const double> dual_mes_l_j = [=] { + CellValue<double> compute_mes_j{diamond_mesh->connectivity()}; + mapper->toDualCell(mes_l, compute_mes_j); + + return compute_mes_j; + }(); + + const CellValue<const double> primal_Vj = mesh_data.Vj(); + FaceValue<const CellId> face_dual_cell_id = [=]() { + FaceValue<CellId> computed_face_dual_cell_id{mesh->connectivity()}; + CellValue<CellId> dual_cell_id{diamond_mesh->connectivity()}; + parallel_for( + diamond_mesh->numberOfCells(), PUGS_LAMBDA(CellId cell_id) { dual_cell_id[cell_id] = cell_id; }); + + mapper->fromDualCell(dual_cell_id, computed_face_dual_cell_id); + + return computed_face_dual_cell_id; + }(); + + NodeValue<const NodeId> dual_node_primal_node_id = [=]() { + CellValue<NodeId> cell_ignored_id{mesh->connectivity()}; + cell_ignored_id.fill(NodeId{std::numeric_limits<unsigned int>::max()}); + + NodeValue<NodeId> node_primal_id{mesh->connectivity()}; + + parallel_for( + mesh->numberOfNodes(), PUGS_LAMBDA(NodeId node_id) { node_primal_id[node_id] = node_id; }); + + NodeValue<NodeId> computed_dual_node_primal_node_id{diamond_mesh->connectivity()}; + + mapper->toDualNode(node_primal_id, cell_ignored_id, computed_dual_node_primal_node_id); + + return computed_dual_node_primal_node_id; + }(); + + CellValue<NodeId> primal_cell_dual_node_id = [=]() { + CellValue<NodeId> cell_id{mesh->connectivity()}; + NodeValue<NodeId> node_ignored_id{mesh->connectivity()}; + node_ignored_id.fill(NodeId{std::numeric_limits<unsigned int>::max()}); + + NodeValue<NodeId> dual_node_id{diamond_mesh->connectivity()}; + + parallel_for( + diamond_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId node_id) { dual_node_id[node_id] = node_id; }); + + CellValue<NodeId> computed_primal_cell_dual_node_id{mesh->connectivity()}; + + mapper->fromDualNode(dual_node_id, node_ignored_id, cell_id); + + return cell_id; + }(); + const auto& dual_Cjr = diamond_mesh_data.Cjr(); + FaceValue<TinyVector<Dimension>> dualClj = [&] { + FaceValue<TinyVector<Dimension>> computedClj{mesh->connectivity()}; + const auto& dual_node_to_cell_matrix = diamond_mesh->connectivity().nodeToCellMatrix(); + const auto& dual_cell_to_node_matrix = diamond_mesh->connectivity().cellToNodeMatrix(); + parallel_for( + mesh->numberOfFaces(), PUGS_LAMBDA(FaceId face_id) { + const auto& primal_face_to_cell = face_to_cell_matrix[face_id]; + for (size_t i = 0; i < primal_face_to_cell.size(); i++) { + CellId cell_id = primal_face_to_cell[i]; + const NodeId dual_node_id = primal_cell_dual_node_id[cell_id]; + for (size_t i_dual_cell = 0; i_dual_cell < dual_node_to_cell_matrix[dual_node_id].size(); + i_dual_cell++) { + const CellId dual_cell_id = dual_node_to_cell_matrix[dual_node_id][i_dual_cell]; + if (face_dual_cell_id[face_id] == dual_cell_id) { + for (size_t i_dual_node = 0; i_dual_node < dual_cell_to_node_matrix[dual_cell_id].size(); + i_dual_node++) { + const NodeId final_dual_node_id = dual_cell_to_node_matrix[dual_cell_id][i_dual_node]; + if (final_dual_node_id == dual_node_id) { + computedClj[face_id] = dual_Cjr(dual_cell_id, i_dual_node); + } + } + } + } + } + }); + return computedClj; + }(); + + FaceValue<TinyVector<Dimension>> nlj = [&] { + FaceValue<TinyVector<Dimension>> computedNlj{mesh->connectivity()}; + parallel_for( + mesh->numberOfFaces(), + PUGS_LAMBDA(FaceId face_id) { computedNlj[face_id] = 1. / l2Norm(dualClj[face_id]) * dualClj[face_id]; }); + return computedNlj; + }(); + + FaceValue<const double> alpha_lambda_l = [&] { + CellValue<double> alpha_j{diamond_mesh->connectivity()}; + + parallel_for( + diamond_mesh->numberOfCells(), PUGS_LAMBDA(CellId diamond_cell_id) { + alpha_j[diamond_cell_id] = dual_lambdaj[diamond_cell_id] / dual_Vj[diamond_cell_id]; + }); + + FaceValue<double> computed_alpha_l{mesh->connectivity()}; + mapper->fromDualCell(alpha_j, computed_alpha_l); + return computed_alpha_l; + }(); + + FaceValue<const double> alpha_mu_l = [&] { + CellValue<double> alpha_j{diamond_mesh->connectivity()}; + + parallel_for( + diamond_mesh->numberOfCells(), PUGS_LAMBDA(CellId diamond_cell_id) { + alpha_j[diamond_cell_id] = dual_muj[diamond_cell_id] / dual_Vj[diamond_cell_id]; + }); + + FaceValue<double> computed_alpha_l{mesh->connectivity()}; + mapper->fromDualCell(alpha_j, computed_alpha_l); + return computed_alpha_l; + }(); + + TinyMatrix<Dimension, double> eye = identity; + + SparseMatrixDescriptor S{number_of_dof * Dimension}; + for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) { + const double beta_mu_l = l2Norm(dualClj[face_id]) * alpha_mu_l[face_id] * mes_l[face_id]; + const double beta_lambda_l = l2Norm(dualClj[face_id]) * alpha_lambda_l[face_id] * mes_l[face_id]; + const auto& primal_face_to_cell = face_to_cell_matrix[face_id]; + for (size_t i_cell = 0; i_cell < primal_face_to_cell.size(); ++i_cell) { + const CellId i_id = primal_face_to_cell[i_cell]; + const bool is_face_reversed_for_cell_i = ((dualClj[face_id], xl[face_id] - xj[i_id]) < 0); + + const TinyVector<Dimension> nil = [&] { + if (is_face_reversed_for_cell_i) { + return -nlj[face_id]; + } else { + return nlj[face_id]; + } + }(); + for (size_t j_cell = 0; j_cell < primal_face_to_cell.size(); ++j_cell) { + const CellId j_id = primal_face_to_cell[j_cell]; + TinyMatrix<Dimension, double> M = + beta_mu_l * eye + beta_mu_l * tensorProduct(nil, nil) + beta_lambda_l * tensorProduct(nil, nil); + TinyMatrix<Dimension, double> N = tensorProduct(nil, nil); + + if (i_cell == j_cell) { + for (size_t i = 0; i < Dimension; ++i) { + for (size_t j = 0; j < Dimension; ++j) { + S((cell_dof_number[i_id] * Dimension) + i, (cell_dof_number[j_id] * Dimension) + j) += M(i, j); + if (primal_face_is_neumann[face_id]) { + S(face_dof_number[face_id] * Dimension + i, cell_dof_number[j_id] * Dimension + j) -= M(i, j); + } + if (primal_face_is_symmetry[face_id]) { + S(face_dof_number[face_id] * Dimension + i, cell_dof_number[j_id] * Dimension + j) += + -((i == j) ? 1 : 0) + N(i, j); + S(face_dof_number[face_id] * Dimension + i, face_dof_number[face_id] * Dimension + j) += + (i == j) ? 1 : 0; + } + } + } + } else { + for (size_t i = 0; i < Dimension; ++i) { + for (size_t j = 0; j < Dimension; ++j) { + S((cell_dof_number[i_id] * Dimension) + i, (cell_dof_number[j_id] * Dimension) + j) -= M(i, j); + } + } + } + } + } + } + + for (CellId cell_id = 0; cell_id < mesh->numberOfCells(); ++cell_id) { + for (size_t i = 0; i < Dimension; ++i) { + const size_t j = cell_dof_number[cell_id] * Dimension + i; + S(j, j) += (*alpha)[cell_id] * primal_Vj[cell_id]; + } + } + + const auto& dual_cell_to_node_matrix = diamond_mesh->connectivity().cellToNodeMatrix(); + const auto& primal_node_to_cell_matrix = mesh->connectivity().nodeToCellMatrix(); + for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) { + const double alpha_mu_face_id = mes_l[face_id] * alpha_mu_l[face_id]; + const double alpha_lambda_face_id = mes_l[face_id] * alpha_lambda_l[face_id]; + + for (size_t i_face_cell = 0; i_face_cell < face_to_cell_matrix[face_id].size(); ++i_face_cell) { + CellId i_id = face_to_cell_matrix[face_id][i_face_cell]; + const bool is_face_reversed_for_cell_i = ((dualClj[face_id], xl[face_id] - xj[i_id]) < 0); + + for (size_t i_node = 0; i_node < primal_face_to_node_matrix[face_id].size(); ++i_node) { + NodeId node_id = primal_face_to_node_matrix[face_id][i_node]; + + const TinyVector<Dimension> nil = [&] { + if (is_face_reversed_for_cell_i) { + return -nlj[face_id]; + } else { + return nlj[face_id]; + } + }(); + + CellId dual_cell_id = face_dual_cell_id[face_id]; + + for (size_t i_dual_node = 0; i_dual_node < dual_cell_to_node_matrix[dual_cell_id].size(); ++i_dual_node) { + const NodeId dual_node_id = dual_cell_to_node_matrix[dual_cell_id][i_dual_node]; + if (dual_node_primal_node_id[dual_node_id] == node_id) { + const TinyVector<Dimension> Clr = dual_Cjr(dual_cell_id, i_dual_node); + + TinyMatrix<Dimension, double> M = alpha_mu_face_id * (Clr, nil) * eye + + alpha_mu_face_id * tensorProduct(Clr, nil) + + alpha_lambda_face_id * tensorProduct(nil, Clr); + + for (size_t j_cell = 0; j_cell < primal_node_to_cell_matrix[node_id].size(); ++j_cell) { + CellId j_id = primal_node_to_cell_matrix[node_id][j_cell]; + for (size_t i = 0; i < Dimension; ++i) { + for (size_t j = 0; j < Dimension; ++j) { + S((cell_dof_number[i_id] * Dimension) + i, (cell_dof_number[j_id] * Dimension) + j) -= + w_rj(node_id, j_cell) * M(i, j); + if (primal_face_is_neumann[face_id]) { + S(face_dof_number[face_id] * Dimension + i, cell_dof_number[j_id] * Dimension + j) += + w_rj(node_id, j_cell) * M(i, j); + } + } + } + } + if (primal_node_is_on_boundary[node_id]) { + for (size_t l_face = 0; l_face < node_to_face_matrix[node_id].size(); ++l_face) { + FaceId l_id = node_to_face_matrix[node_id][l_face]; + if (primal_face_is_on_boundary[l_id]) { + for (size_t i = 0; i < Dimension; ++i) { + for (size_t j = 0; j < Dimension; ++j) { + S(cell_dof_number[i_id] * Dimension + i, face_dof_number[l_id] * Dimension + j) -= + w_rl(node_id, l_face) * M(i, j); + } + } + if (primal_face_is_neumann[face_id]) { + for (size_t i = 0; i < Dimension; ++i) { + for (size_t j = 0; j < Dimension; ++j) { + S(face_dof_number[face_id] * Dimension + i, face_dof_number[l_id] * Dimension + j) += + w_rl(node_id, l_face) * M(i, j); + } + } + } + } + } + } + } + } + // } + } + } + } + for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) { + if (primal_face_is_dirichlet[face_id]) { + for (size_t i = 0; i < Dimension; ++i) { + S(face_dof_number[face_id] * Dimension + i, face_dof_number[face_id] * Dimension + i) += 1; + } + } + } + + Vector<double> b{number_of_dof * Dimension}; + for (CellId cell_id = 0; cell_id < mesh->numberOfCells(); ++cell_id) { + for (size_t i = 0; i < Dimension; ++i) { + b[(cell_dof_number[cell_id] * Dimension) + i] = primal_Vj[cell_id] * fj[cell_id][i]; + } + } + + // Dirichlet + NodeValue<bool> node_tag{mesh->connectivity()}; + node_tag.fill(false); + for (const auto& boundary_condition : boundary_condition_list) { + std::visit( + [&](auto&& bc) { + using T = std::decay_t<decltype(bc)>; + if constexpr (std::is_same_v<T, DirichletBoundaryCondition>) { + const auto& face_list = bc.faceList(); + const auto& value_list = bc.valueList(); + for (size_t i_face = 0; i_face < face_list.size(); ++i_face) { + const FaceId face_id = face_list[i_face]; + + for (size_t i = 0; i < Dimension; ++i) { + b[(face_dof_number[face_id] * Dimension) + i] += value_list[i_face][i]; + } + } + } + }, + boundary_condition); + } + + for (const auto& boundary_condition : boundary_condition_list) { + std::visit( + [&](auto&& bc) { + using T = std::decay_t<decltype(bc)>; + if constexpr ((std::is_same_v<T, NormalStrainBoundaryCondition>)) { + const auto& face_list = bc.faceList(); + const auto& value_list = bc.valueList(); + for (size_t i_face = 0; i_face < face_list.size(); ++i_face) { + FaceId face_id = face_list[i_face]; + for (size_t i = 0; i < Dimension; ++i) { + b[face_dof_number[face_id] * Dimension + i] += mes_l[face_id] * value_list[i_face][i]; // sign + } + } + } + }, + boundary_condition); + } + + CRSMatrix A{S}; + Vector<double> U{number_of_dof * Dimension}; + U = 1; + Vector r = A * U - b; + std::cout << "initial (real) residu = " << std::sqrt((r, r)) << '\n'; + + LinearSolver solver; + solver.solveLocalSystem(A, U, b); + + r = A * U - b; + + std::cout << "final (real) residu = " << std::sqrt((r, r)) << '\n'; + + m_solution = std::make_shared<DiscreteFunctionP0<Dimension, TinyVector<Dimension>>>(mesh); + auto& solution = *m_solution; + parallel_for( + mesh->numberOfCells(), PUGS_LAMBDA(CellId cell_id) { + for (size_t i = 0; i < Dimension; ++i) { + solution[cell_id][i] = U[(cell_dof_number[cell_id] * Dimension) + i]; + } + }); + + // NodeValue<TinyVector<3>> ur3d{mesh->connectivity()}; + // ur3d.fill(zero); + + // parallel_for( + // mesh->numberOfNodes(), PUGS_LAMBDA(NodeId node_id) { + // TinyVector<Dimension> x = zero; + // const auto node_cells = node_to_cell_matrix[node_id]; + // for (size_t i_cell = 0; i_cell < node_cells.size(); ++i_cell) { + // CellId cell_id = node_cells[i_cell]; + // x += w_rj(node_id, i_cell) * Uj[cell_id]; + // } + // const auto node_faces = node_to_face_matrix[node_id]; + // for (size_t i_face = 0; i_face < node_faces.size(); ++i_face) { + // FaceId face_id = node_faces[i_face]; + // if (primal_face_is_on_boundary[face_id]) { + // x += w_rl(node_id, i_face) * Ul[face_id]; + // } + // } + // for (size_t i = 0; i < Dimension; ++i) { + // ur3d[node_id][i] = x[i]; + // } + // }); + } + } else { + throw NotImplementedError("not done in 1d"); + } + } +}; + +std::shared_ptr<const IDiscreteFunction> +VectorDiamondSchemeHandler::solution() const +{ + return m_scheme->getSolution(); +} + +VectorDiamondSchemeHandler::VectorDiamondSchemeHandler( + const std::shared_ptr<const IDiscreteFunction>& alpha, + const std::shared_ptr<const IDiscreteFunction>& dual_lambda, + const std::shared_ptr<const IDiscreteFunction>& dual_mu, + const std::shared_ptr<const IDiscreteFunction>& f, + const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list) +{ + const std::shared_ptr i_mesh = getCommonMesh({alpha, f}); + const std::shared_ptr i_dual_mesh = getCommonMesh({dual_lambda, dual_mu}); + checkDiscretizationType({alpha, dual_lambda, dual_mu, f}, DiscreteFunctionType::P0); + + switch (i_mesh->dimension()) { + case 1: { + using MeshType = Mesh<Connectivity<1>>; + using DiscreteScalarFunctionType = DiscreteFunctionP0<1, double>; + using DiscreteVectorFunctionType = DiscreteFunctionP0<1, TinyVector<1>>; + + std::shared_ptr mesh = std::dynamic_pointer_cast<const MeshType>(i_mesh); + + if (DiamondDualMeshManager::instance().getDiamondDualMesh(mesh) != dual_mu->mesh()) { + throw NormalError("mu_dual is not defined on the dual mesh"); + } + + m_scheme = + std::make_unique<VectorDiamondScheme<1>>(mesh, std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(alpha), + std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(dual_lambda), + std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(dual_mu), + std::dynamic_pointer_cast<const DiscreteVectorFunctionType>(f), + bc_descriptor_list); + break; + } + case 2: { + using MeshType = Mesh<Connectivity<2>>; + using DiscreteScalarFunctionType = DiscreteFunctionP0<2, double>; + using DiscreteVectorFunctionType = DiscreteFunctionP0<2, TinyVector<2>>; + + std::shared_ptr mesh = std::dynamic_pointer_cast<const MeshType>(i_mesh); + + if (DiamondDualMeshManager::instance().getDiamondDualMesh(mesh) != dual_mu->mesh()) { + throw NormalError("mu_dual is not defined on the dual mesh"); + } + + m_scheme = + std::make_unique<VectorDiamondScheme<2>>(mesh, std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(alpha), + std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(dual_lambda), + std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(dual_mu), + std::dynamic_pointer_cast<const DiscreteVectorFunctionType>(f), + bc_descriptor_list); + break; + } + case 3: { + using MeshType = Mesh<Connectivity<3>>; + using DiscreteScalarFunctionType = DiscreteFunctionP0<3, double>; + using DiscreteVectorFunctionType = DiscreteFunctionP0<3, TinyVector<3>>; + + std::shared_ptr mesh = std::dynamic_pointer_cast<const MeshType>(i_mesh); + + if (DiamondDualMeshManager::instance().getDiamondDualMesh(mesh) != dual_mu->mesh()) { + throw NormalError("mu_dual is not defined on the dual mesh"); + } + + m_scheme = + std::make_unique<VectorDiamondScheme<3>>(mesh, std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(alpha), + std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(dual_lambda), + std::dynamic_pointer_cast<const DiscreteScalarFunctionType>(dual_mu), + std::dynamic_pointer_cast<const DiscreteVectorFunctionType>(f), + bc_descriptor_list); + break; + } + default: { + throw UnexpectedError("invalid mesh dimension"); + } + } +} + +VectorDiamondSchemeHandler::~VectorDiamondSchemeHandler() = default; diff --git a/src/scheme/VectorDiamondScheme.hpp b/src/scheme/VectorDiamondScheme.hpp index bb67cd15d..cc2bca603 100644 --- a/src/scheme/VectorDiamondScheme.hpp +++ b/src/scheme/VectorDiamondScheme.hpp @@ -21,6 +21,32 @@ #include <scheme/NeumannBoundaryConditionDescriptor.hpp> #include <scheme/SymmetryBoundaryConditionDescriptor.hpp> +class VectorDiamondSchemeHandler +{ + private: + class IVectorDiamondScheme; + + template <size_t Dimension> + class VectorDiamondScheme; + + template <size_t Dimension> + class InterpolationWeightsManager; + + public: + std::unique_ptr<IVectorDiamondScheme> m_scheme; + + std::shared_ptr<const IDiscreteFunction> solution() const; + + VectorDiamondSchemeHandler( + const std::shared_ptr<const IDiscreteFunction>& alpha, + const std::shared_ptr<const IDiscreteFunction>& lambda, + const std::shared_ptr<const IDiscreteFunction>& mu, + const std::shared_ptr<const IDiscreteFunction>& f, + const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list); + + ~VectorDiamondSchemeHandler(); +}; + template <size_t Dimension> class VectorDiamondScheme { -- GitLab