diff --git a/src/main.cpp b/src/main.cpp
index b2ca417a79d2607a1a800ec6b280bb7e8c1803c5..81926430be11b975371954b7b1317f46165e4463 100644
--- a/src/main.cpp
+++ b/src/main.cpp
@@ -138,7 +138,7 @@ int main(int argc, char *argv[])
     const Kokkos::View<const double*> Vj = mesh_data.Vj();
     const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
 
-    const double tmax=0.7;
+    const double tmax=1.5;
     double t=0;
 
     int itermax=std::numeric_limits<int>::max();
@@ -170,7 +170,7 @@ int main(int argc, char *argv[])
       
       // ETAPE 2 DU SPLITTING - DIFFUSION
       
-      double dt_diff = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj, kj);
+      double dt_diff = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj, kj, cj);
  
       if (dt_euler <= dt_diff) {
 	dt_diff = dt_euler;
@@ -179,7 +179,7 @@ int main(int argc, char *argv[])
 	double t_diff = t-dt_euler;
 	while (t > t_diff) {
 	  finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns);
-	  dt_diff = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj, kj);
+	  dt_diff = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj, kj, cj);
 	  if (t_diff+dt_diff > t) {
 	    dt_diff = t-t_diff;
 	  }
@@ -208,7 +208,7 @@ int main(int argc, char *argv[])
 
     std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
 	      << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
-
+    /*
     double error1 = 0.;
     error1 = finite_volumes_diffusion.error_L2_rho(unknowns, tmax);
 
@@ -226,7 +226,7 @@ int main(int argc, char *argv[])
 
     std::cout << "* " << rang::style::underline << "Erreur L2 u" << rang::style::reset
 	      << ":  " << rang::fgB::green << error << rang::fg::reset << " \n";
-    
+    */
     /*
     double error3 = 0.;
     error3 = finite_volumes_diffusion.error_L2_E(unknowns);
@@ -251,11 +251,13 @@ int main(int argc, char *argv[])
     { // gnuplot output for density
      const Kokkos::View<const Rd*> xj   = mesh_data.xj();
      const Kokkos::View<const double*> rhoj = unknowns.rhoj();
-     double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
-     std::ofstream fout("rho");
+     //double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
+     std::ofstream fout("rho1.5");
      fout.precision(15);
      for (size_t j=0; j<mesh.numberOfCells(); ++j) {
-       fout << xj[j][0] << ' ' << rhoj[j] << ' ' << std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h << '\n';
+       fout << xj[j][0] << ' ' << rhoj[j] << '\n';
+       // Kidder
+       // fout << xj[j][0] << ' ' << rhoj[j] << ' ' << std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h << '\n';
      }
      }
 
@@ -268,8 +270,8 @@ int main(int argc, char *argv[])
      for (size_t j=0; j<mesh.numberOfCells(); ++j) {
        //fout << xj[j][0] << ' ' << uj[j][0] <<  ' ' << std::sin(pi*xj[j][0])*std::exp(-2.*pi*pi*0.2) <<'\n'; //cas k constant
        //fout << xj[j][0] << ' ' << uj[j][0] <<  ' ' << std::sin(pi*xj[j][0])*std::exp(-0.2) <<'\n'; // cas k non constant
-       //fout << xj[j][0] << ' ' << uj[j][0] << '\n';
-       fout << xj[j][0] << ' ' << uj[j][0] << ' ' << -(xj[j][0]*tmax)/((50./9.)-tmax*tmax) << '\n';
+       fout << xj[j][0] << ' ' << uj[j][0] << '\n';
+       //fout << xj[j][0] << ' ' << uj[j][0] << ' ' << -(xj[j][0]*tmax)/((50./9.)-tmax*tmax) << '\n';
      }
      }
 
@@ -277,13 +279,14 @@ int main(int argc, char *argv[])
      const Kokkos::View<const Rd*> xj   = mesh_data.xj();
      const Kokkos::View<const double*> Ej = unknowns.Ej();
      //double pi = 4.*std::atan(1.);
-     double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
+     //double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
      std::ofstream fout("E");
      fout.precision(15);
      for (size_t j=0; j<mesh.numberOfCells(); ++j) {
        //fout << xj[j][0] << ' ' << Ej[j] << ' ' << (-(std::cos(pi*xj[j][0])*std::cos(pi*xj[j][0]))+(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0])))*0.5*(std::exp(-4.*pi*pi*0.2)-1.) + 2. <<'\n'; // cas k constant
        //fout << xj[j][0] << ' ' << Ej[j] << ' ' << ((xj[j][0]*pi*pi*0.5)*(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0]) - std::cos(xj[j][0]*pi)*std::cos(pi*xj[j][0])) - pi*0.5*std::sin(pi*xj[j][0])*std::cos(pi*xj[j][0]))*(std::exp(-2.*0.2)-1.) + 2. <<'\n' ; // cas k non constant
-       fout << xj[j][0] << ' ' << Ej[j] << ' ' << (std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h)*(std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h) + (-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*(-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*0.5 << '\n';
+       //fout << xj[j][0] << ' ' << Ej[j] << ' ' << (std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h)*(std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h) + (-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*(-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*0.5 << '\n'; // kidder
+       fout << xj[j][0] << ' ' << Ej[j] << '\n';
      }
      }
 
diff --git a/src/mesh/Mesh.hpp b/src/mesh/Mesh.hpp
index 667f1877db466a9d581834099739504c9d78429b..ef3176a0371c4a39d7f0fdecc936bace02a6222d 100644
--- a/src/mesh/Mesh.hpp
+++ b/src/mesh/Mesh.hpp
@@ -80,8 +80,8 @@ public:
       m_x0("x0", 1),
       m_xmax("xmax", 1)
   {
-    double a = 0.;
-    double b = 10.;
+    double a = 0.1;
+    double b = 1.;
     m_x0[0][0] = a;
     m_xmax[0][0] = b;
     const double delta_x = (b-a)/connectivity.numberOfCells();
diff --git a/src/scheme/AcousticSolver.hpp b/src/scheme/AcousticSolver.hpp
index a4b1250e1fd3c5bc4a6707f7af7cc3055b6a8a44..883c088f8528d237652dc47bcbd36f077bf29b78 100644
--- a/src/scheme/AcousticSolver.hpp
+++ b/src/scheme/AcousticSolver.hpp
@@ -181,7 +181,7 @@ private:
   }
   */
   
-  Kokkos::View<Rd*> 
+  Kokkos::View<Rd*>  // calcule u_r (vitesse au sommet du maillage et flux de vitesse)
   computeUr(const Kokkos::View<const Rdd*>& Ar,
 	    const Kokkos::View<const Rd*>& br,
 	    const double& t) {
@@ -197,14 +197,19 @@ private:
 	m_ur[r]=invAr(r)*br(r);
       });
 
+    m_ur[0]=zero;
+    m_ur[m_mesh.numberOfNodes()-1]=zero;
+
+    // Kidder
+
     // Conditions aux limites dependant du temps
     //m_ur[0]=(-t/((50./9.)-t*t))*xr[0];
     //m_ur[m_mesh.numberOfNodes()-1] = (-t/((50./9.)-t*t))*xr[m_mesh.numberOfNodes()-1];
 
     // R(t) = x*h(t) a la place de x(t) 
-    double h = std::sqrt(1. - (t*t)/(50./9.));
-    m_ur[0]=(-t/((50./9.)-t*t))*h*x0[0];
-    m_ur[m_mesh.numberOfNodes()-1] = (-t/((50./9.)-t*t))*h*xmax[0];
+    //double h = std::sqrt(1. - (t*t)/(50./9.));
+    //m_ur[0]=(-t/((50./9.)-t*t))*h*x0[0];
+    //m_ur[m_mesh.numberOfNodes()-1] = (-t/((50./9.)-t*t))*h*xmax[0];
 
     return m_ur;
   }
diff --git a/src/scheme/FiniteVolumesDiffusion.hpp b/src/scheme/FiniteVolumesDiffusion.hpp
index 44e1b5d5d96a9fe6cf7b4ced24b517dc4cad31f3..2c1c83ffcffaddfdf219686c1f7ef5ebc9cb31d1 100644
--- a/src/scheme/FiniteVolumesDiffusion.hpp
+++ b/src/scheme/FiniteVolumesDiffusion.hpp
@@ -115,7 +115,7 @@ private:
       });
 
     // Conditions aux bords
-    /*
+    
     int cell_here = face_cells(0,0);
     int local_face_number_in_cell = face_cell_local_face(0,0);
     m_Fl(0) = -(kL(0) + kj(cell_here))*(1./(2*Vl(0)))*(tensorProduct(uj(cell_here), Cjr(cell_here, local_face_number_in_cell)) - tensorProduct(uL(0), Cjr(cell_here, local_face_number_in_cell)));
@@ -124,7 +124,7 @@ private:
     local_face_number_in_cell = face_cell_local_face(m_mesh.numberOfFaces()-1,0);
     m_Fl(m_mesh.numberOfFaces()-1) = -(kR(0) + kj(cell_here))*(1/(2.*Vl(m_mesh.numberOfFaces()-1)))*(tensorProduct(uj(cell_here), Cjr(cell_here, local_face_number_in_cell)) - tensorProduct(uR(0), Cjr(cell_here, local_face_number_in_cell)));
     //m_Fl(m_mesh.numberOfFaces()-1) = -xr[m_mesh.numberOfNodes()-1][0]*(tensorProduct(uj(cell_here), Cjr(cell_here, local_face_number_in_cell)) - tensorProduct(uR(0), Cjr(cell_here, local_face_number_in_cell)));
-    */
+    
 
     // k = 0.5
     //m_Fl(0,0) = -(t/((50./9.)-t*t))*0.5;
@@ -134,9 +134,9 @@ private:
     //m_Fl(0,0) = -(t/((50./9.)-t*t))*xr[0][0];
     //m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*xr[m_mesh.numberOfFaces()-1][0];
 
-    double h = std::sqrt(1. - (t*t)/(50./9.));
-    m_Fl(0,0) = -(t/((50./9.)-t*t))*h*x0[0][0];
-    m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*h*xmax[0][0];
+    //double h = std::sqrt(1. - (t*t)/(50./9.));
+    //m_Fl(0,0) = -(t/((50./9.)-t*t))*h*x0[0][0];
+    //m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*h*xmax[0][0];
     
     return m_Fl ;
   }
@@ -176,15 +176,15 @@ private:
       });
 
     // Conditions aux bords
-    // m_Gl(0) = Fl(0)*uL(0);
-    //m_Gl(m_mesh.numberOfFaces()-1) = Fl(m_mesh.numberOfFaces()-1)*uR(0);
+    m_Gl(0) = Fl(0)*uL(0);
+    m_Gl(m_mesh.numberOfFaces()-1) = Fl(m_mesh.numberOfFaces()-1)*uR(0);
 
     //m_Gl(0) = -(t/((50./9.)-t*t))*Fl(0,0)*xr(0);
     //m_Gl(m_mesh.numberOfFaces()-1) = -(t/((50./9.)-t*t))*Fl(m_mesh.numberOfFaces()-1,0)*xr(m_mesh.numberOfFaces()-1);
 
-    double h = std::sqrt(1. - (t*t)/(50./9.));
-    m_Gl(0) = -(t/((50./9.)-t*t))*h*Fl(0,0)*x0(0);
-    m_Gl(m_mesh.numberOfFaces()-1) = -(t/((50./9.)-t*t))*h*Fl(m_mesh.numberOfFaces()-1,0)*xmax(0);
+    //double h = std::sqrt(1. - (t*t)/(50./9.));
+    //m_Gl(0) = -(t/((50./9.)-t*t))*h*Fl(0,0)*x0(0);
+    //m_Gl(m_mesh.numberOfFaces()-1) = -(t/((50./9.)-t*t))*h*Fl(m_mesh.numberOfFaces()-1,0)*xmax(0);
     
     return m_Gl ;
 
@@ -244,12 +244,11 @@ public:
   // Utilise la reduction definie dans la structure ReduceMin.
   KOKKOS_INLINE_FUNCTION
   double diffusion_dt(const Kokkos::View<const double*>& rhoj,
-		      const Kokkos::View<const double*>& kj) const {
+		      const Kokkos::View<const double*>& kj,
+		      const Kokkos::View<const double*>& cj) const {
 
     Kokkos::View<double*> dt_j("dt_j", m_mesh.numberOfCells());
 
-    const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr();
-
     const Kokkos::View<const double*>& Vl = m_mesh_data.Vl();
 
     const Kokkos::View<const double*>& Vj = m_mesh_data.Vj();
@@ -276,8 +275,12 @@ public:
 	 sum += kj(cell_nodes(j,m));
 	}
 
-	// dt_j[j]= 0.5*rhoj(j)*Vj(j)*(1./(2.*kj(j) + sum))*minVl;
-	dt_j[j]= 0.5*rhoj(j)*Vj(j)*(1./sum)*minVl;
+	if (sum == 0.) {
+	  dt_j[j] = Vj[j]/cj[j]; 
+	} else {
+	  // dt_j[j]= 0.5*rhoj(j)*Vj(j)*(1./(2.*kj(j) + sum))*minVl;
+	  dt_j[j]= 0.5*rhoj(j)*Vj(j)*(1./sum)*minVl;
+	}
 	
       });
     
@@ -343,8 +346,8 @@ public:
 	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((0.5*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
 
 	// ajout second membre pour kidder (k = x)
-	uj[j][0] += (dt*inv_mj[j])*Vj(j)*(t/((50./9.)-t*t)); 
-	Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
+	//uj[j][0] += (dt*inv_mj[j])*Vj(j)*(t/((50./9.)-t*t)); 
+	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
 
       });
 
diff --git a/src/scheme/FiniteVolumesEulerUnknowns.hpp b/src/scheme/FiniteVolumesEulerUnknowns.hpp
index 99a8f11386b5bbd813a6fe62df9fc6d2ff117e52..d7eec6457c913d6f01d2a4918672943909f2a48c 100644
--- a/src/scheme/FiniteVolumesEulerUnknowns.hpp
+++ b/src/scheme/FiniteVolumesEulerUnknowns.hpp
@@ -191,24 +191,23 @@ public:
     const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
 
     Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
-  	/*
-	  if (xj[j][0]<0.5) {
+	if (xj[j][0]<0.5) {
   	  m_rhoj[j]=1;
   	} else {
   	  m_rhoj[j]=0.125;
   	}
-	*/
-	m_rhoj[j] = std::sqrt((3.*(xj[j][0]*xj[j][0]) + 100.)/100.);
+	//Kidder
+	//m_rhoj[j] = std::sqrt((3.*(xj[j][0]*xj[j][0]) + 100.)/100.);
       });
 
     Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
-  	/*if (xj[j][0]<0.5) {
+  	if (xj[j][0]<0.5) {
   	  m_pj[j]=1;
   	} else {
   	  m_pj[j]=0.1;
   	}
-	*/
-	m_pj[j] = 2.*std::pow(m_rhoj[j],3);
+	
+	//m_pj[j] = 2.*std::pow(m_rhoj[j],3);
       });
 
     Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
@@ -216,8 +215,8 @@ public:
       });
 
     Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
-  	//m_gammaj[j] = 1.4;
-	m_gammaj[j] = 3.;
+  	m_gammaj[j] = 1.4;
+	//m_gammaj[j] = 3.;
       });
 
     BlockPerfectGas block_eos(m_rhoj, m_ej, m_pj, m_gammaj, m_cj);
@@ -237,16 +236,21 @@ public:
       });
 
     Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
-  	m_kj[j] =  xj[j][0];
+  	//m_kj[j] =  xj[j][0];
 	//m_kj[j] = 0.5;
+	if (xj[j][0]<0.7) {
+  	  m_kj[j]=0.;
+  	} else {
+  	  m_kj[j]=0.5;
+  	}
       });
 
      // Conditions aux bords de Dirichlet sur u et k
 
     m_uL[0] = zero;
     m_uR[0] = zero;
-    m_kL[0] = xj[0][0];
-    m_kR[0] = xj[m_mesh.numberOfCells()-1][0];
+    m_kL[0] = 0.01;
+    m_kR[0] = 0.5;
 
   }