diff --git a/src/main.cpp b/src/main.cpp
index fad893502dbbc95dff1c5a310ca43a9ef6e5dd45..4713c168ee33421c75cff992ae403c9ee38f607b 100644
--- a/src/main.cpp
+++ b/src/main.cpp
@@ -292,24 +292,6 @@ int main(int argc, char *argv[])
 	}
       }
       
-      
-      // AUTRE APPROCHE DU SPLITTING (PLUS LONG)
-      /*
-      double dt_euler = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
-      double dt_diff = 0.9*finite_volumes_diffusion.diffusion_dt(rhoj, kj, cj);
-      double dt = 0.;
-      if (dt_euler < dt_diff) {
-	dt = dt_euler;
-      } else {
-	dt = dt_diff;
-      }
-      if (t+dt > tmax) {
-	dt = tmax-t;
-      }
-      acoustic_solver.computeNextStep(t,dt, unknowns);
-      finite_volumes_diffusion.computeNextStep(t, dt, unknowns);
-      t += dt;
-      */
       /*
       // DIFFUSION PURE
       
@@ -654,20 +636,6 @@ int main(int argc, char *argv[])
      }
      }
 
-     /*
-     { // gnuplot output u^2*0.5 + T
-     const Kokkos::View<const Rd*> xj   = mesh_data.xj();
-     const Kokkos::View<const double*> Tj = unknowns.Tj();
-     const Kokkos::View<const Rd*> uj = unknowns.uj();
-     double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
-     std::ofstream fout("essai");
-     fout.precision(15);
-     for (size_t j=0; j<mesh.numberOfCells(); ++j) {
-       fout << xj[j][0] << ' ' << Tj[j]+uj[j][0]*uj[j][0]*0.5 << ' ' <<   (std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h)*(std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h) + (-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*(-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*0.5 << '\n'; // kidder
-     }
-     }
-     */
-
      /*
      { // gnuplot output for entropy (gaz parfait en prenant cv = 1))
      const Kokkos::View<const Rd*> xj   = mesh_data.xj();
diff --git a/src/scheme/AcousticSolver.hpp b/src/scheme/AcousticSolver.hpp
index eb13817957b5eacd4598d4b6b6afaf73595406ef..a1f4dd88f29a5717377b3f77a428333671b887b2 100644
--- a/src/scheme/AcousticSolver.hpp
+++ b/src/scheme/AcousticSolver.hpp
@@ -38,7 +38,7 @@ private:
   // -------
 
  // Sert a calculer les reductions (en gros calculer le min sur des
- // vecteurs en parallele) Ne pas regarder plus comment ca marche.
+ // vecteurs en parallele)
   struct ReduceMin
   {
   private:
@@ -164,22 +164,6 @@ private:
 
     return m_br;
   }
-
-  /*
-  Kokkos::View<Rd*> // calcule u_r (vitesse au sommet du maillage et flux de vitesse)
-  computeUr(const Kokkos::View<const Rdd*>& Ar,
-	    const Kokkos::View<const Rd*>& br) {
-    inverse(Ar, m_inv_Ar);
-    const Kokkos::View<const Rdd*> invAr = m_inv_Ar;
-    Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
-	m_ur[r]=invAr(r)*br(r);
-      });
-    m_ur[0]=zero;
-    m_ur[m_mesh.numberOfNodes()-1]=zero;
-
-    return m_ur;
-  }
-  */
   
   Kokkos::View<Rd*>  // calcule u_r (vitesse au sommet du maillage et flux de vitesse)
   computeUr(const Kokkos::View<const Rdd*>& Ar,
@@ -201,13 +185,7 @@ private:
     //m_ur[0]=zero;
     //m_ur[m_mesh.numberOfNodes()-1]=zero;
     
-    // Kidder
-
-    // Conditions aux limites dependant du temps
-    //m_ur[0]=(-t/((50./9.)-t*t))*xr[0];
-    //m_ur[m_mesh.numberOfNodes()-1] = (-t/((50./9.)-t*t))*xr[m_mesh.numberOfNodes()-1];
-
-    //R(t) = x*h(t) a la place de x(t) 
+    // CL Kidder
     
     double h = std::sqrt(1. - (t*t)/(50./9.));
     m_ur[0]=(-t/((50./9.)-t*t))*h*x0[0];
@@ -273,7 +251,6 @@ private:
 
     Kokkos::View<Rd*> ur = m_ur;
     Kokkos::View<Rd**> Fjr = m_Fjr;
-    //ur  = computeUr(Ar, br);
     ur = computeUr(Ar, br, t);
     Fjr = computeFjr(Ajr, ur, Cjr, uj, pj);
   }
diff --git a/src/scheme/FiniteVolumesDiffusion.hpp b/src/scheme/FiniteVolumesDiffusion.hpp
index 772038f4ef5a8010016d87c1cd77a9059f0bd417..b3720dd661bdce8c7d584fddbddcb0ac80da8749 100644
--- a/src/scheme/FiniteVolumesDiffusion.hpp
+++ b/src/scheme/FiniteVolumesDiffusion.hpp
@@ -35,8 +35,6 @@ class FiniteVolumesDiffusion
 
 private:
 
- // Sert a calculer les reductions (en gros calculer le min sur des
- // vecteurs en parallele)
   struct ReduceMin
   {
   private:
@@ -119,11 +117,11 @@ private:
     int cell_here = face_cells(0,0);
     int local_face_number_in_cell = face_cell_local_face(0,0);
     m_Fl(0) = -(kL(0) + kj(cell_here))*(1./(2*Vl(0)))*(tensorProduct(uj(cell_here), Cjr(cell_here, local_face_number_in_cell)) - tensorProduct(uL(0), Cjr(cell_here, local_face_number_in_cell)));
-    //m_Fl(0) = -xr[0][0]*(tensorProduct(uj(cell_here), Cjr(cell_here, local_face_number_in_cell)) - tensorProduct(uL(0), Cjr(cell_here, local_face_number_in_cell)));
+    
     cell_here = face_cells(m_mesh.numberOfFaces()-1,0);
     local_face_number_in_cell = face_cell_local_face(m_mesh.numberOfFaces()-1,0);
     m_Fl(m_mesh.numberOfFaces()-1) = -(kR(0) + kj(cell_here))*(1/(2.*Vl(m_mesh.numberOfFaces()-1)))*(tensorProduct(uj(cell_here), Cjr(cell_here, local_face_number_in_cell)) - tensorProduct(uR(0), Cjr(cell_here, local_face_number_in_cell)));
-    //m_Fl(m_mesh.numberOfFaces()-1) = -xr[m_mesh.numberOfNodes()-1][0]*(tensorProduct(uj(cell_here), Cjr(cell_here, local_face_number_in_cell)) - tensorProduct(uR(0), Cjr(cell_here, local_face_number_in_cell)));
+   
     */
     
     // Kidder
@@ -133,9 +131,6 @@ private:
     //m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*0.5;
 
     // k = x
-    //m_Fl(0,0) = -(t/((50./9.)-t*t))*xr[0][0];
-    //m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*xr[m_mesh.numberOfFaces()-1][0];
-    
     double h = std::sqrt(1. - (t*t)/(50./9.));
     m_Fl(0,0) = -(t/((50./9.)-t*t))*h*x0[0][0];
     m_Fl(m_mesh.numberOfFaces()-1,0) = -(t/((50./9.)-t*t))*h*xmax[0][0];
@@ -179,15 +174,12 @@ private:
       });
 
     // Conditions aux bords
-    // m_Gl(0) = Fl(0)*uL(0);
+
+    //m_Gl(0) = Fl(0)*uL(0);
     //m_Gl(m_mesh.numberOfFaces()-1) = Fl(m_mesh.numberOfFaces()-1)*uR(0);
 
     // Kidder
-    
-    // m_Gl(0) = -(t/((50./9.)-t*t))*Fl(0,0)*xr(0);
-    //m_Gl(m_mesh.numberOfFaces()-1) = -(t/((50./9.)-t*t))*Fl(m_mesh.numberOfFaces()-1,0)*xr(m_mesh.numberOfFaces()-1);
-    
-     
+
     double h = std::sqrt(1. - (t*t)/(50./9.));
     m_Gl(0) = -(t/((50./9.)-t*t))*h*Fl(0,0)*x0(0);
     m_Gl(m_mesh.numberOfFaces()-1) = -(t/((50./9.)-t*t))*h*Fl(m_mesh.numberOfFaces()-1,0)*xmax(0);
@@ -246,16 +238,19 @@ private:
     cell_here = face_cells(m_mesh.numberOfFaces()-1,0);
     m_Bl(m_mesh.numberOfFaces()-1) = -(nuR(0) + nuj(cell_here))*(1/(2.*Vl(m_mesh.numberOfFaces()-1)))*(Tj(cell_here) - TR(0));
     */
-    
-    double h = std::sqrt(1. - (t*t)/(50./9.));
+
+    // Kiddder
 
     // nu = (1+x)*0.5
+    //double h = std::sqrt(1. - (t*t)/(50./9.));
     //m_Bl(0) = ((1.+h*x0[0][0])*3.*h*x0[0][0])/(100.*h*h*h*h);
     //m_Bl(m_mesh.numberOfFaces()-1) = ((1.+h*xmax[0][0])*3.*h*xmax[0][0])/(100.*h*h*h*h);
+    
+    
+    // nu = 0
     m_Bl(0) = 0.;
     m_Bl(m_mesh.numberOfFaces()-1) = 0.;
 
-
     // nu = 0.2
     //m_Bl(0) = (0.2*3.*h*x0[0][0])/(50.*h*h*h*h);
     //m_Bl(m_mesh.numberOfFaces()-1) = (0.2*3.*h*xmax[0][0])/(50.*h*h*h*h);
@@ -423,8 +418,8 @@ public:
     // double pi = 4.*std::atan(1.);
     double h = std::sqrt(1. - (t*t)/(50./9.));
 
-    // Diffusion pure
-    //TR(0) = 2-0.5*pi*pi*(std::exp(-2.*t)-1.);
+    // CL en diffusion pure 
+    // TR(0) = 2-0.5*pi*pi*(std::exp(-2.*t)-1.);
 
     // Calcule les flux
     computeExplicitFluxes(uj, Cjr, kj, uL, uR, kL, kR, Tj, nuj, TL, TR, nuL, nuR, t);
@@ -466,9 +461,9 @@ public:
 
 	// ajout second membre pour kidder (k = x)
 	uj[j][0] += (dt*inv_mj[j])*Vj(j)*(t/((50./9.)-t*t)); 
-	Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
-	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))+(0.2*3.)/(50.*h*h*h*h));
-	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))+(6*xj[j][0]+3.)/(100*h*h*h*h));
+	Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))); // nu = 0
+	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))+(0.2*3.)/(50.*h*h*h*h)); // nu = 0.2
+	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))+(6*xj[j][0]+3.)/(100*h*h*h*h)); // nu = (1+x)*0.5
       });
 
     // Calcul de e par la formule e = E-0.5 u^2