Skip to content
Snippets Groups Projects
Select Git revision
  • 953e1548b64772abf483190112b6686526dd4780
  • develop default protected
  • feature/variational-hydro
  • origin/stage/bouguettaia
  • feature/gmsh-reader
  • feature/reconstruction
  • save_clemence
  • feature/kinetic-schemes
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

SparseMatrixDescriptor.hpp

Blame
  • FiniteVolumesDiffusion.hpp 9.83 KiB
    #ifndef FINITE_VOLUMES_DIFFUSION_HPP
    #define FINITE_VOLUMES_DIFFUSION_HPP
    
    // --- INCLUSION fichiers headers ---
    
    #include <Kokkos_Core.hpp>
    
    #include <rang.hpp>
    #include <BlockPerfectGas.hpp>
    
    #include <TinyVector.hpp>
    #include <TinyMatrix.hpp>
    #include <Mesh.hpp>
    #include <MeshData.hpp>
    #include <FiniteVolumesEulerUnknowns.hpp>
    
    // ---------------------------------
    
    // Creation classe FiniteVolumesDiffusion 
    
    template<typename MeshData> 
    class FiniteVolumesDiffusion 
    {
      typedef typename MeshData::MeshType MeshType; 
      typedef FiniteVolumesEulerUnknowns<MeshData> UnknownsType; 
    
      MeshData& m_mesh_data; 
      const MeshType& m_mesh; 
      const typename MeshType::Connectivity& m_connectivity; 
    
      constexpr static size_t dimension = MeshType::dimension;
    
      typedef TinyVector<dimension> Rd; 
      typedef TinyMatrix<dimension> Rdd; 
    
    private:
    
     // Sert a calculer les reductions (en gros calculer le min sur des
     // vecteurs en parallele)
      struct ReduceMin
      {
      private:
        const Kokkos::View<const double*> x_;
    
      public:
        typedef Kokkos::View<const double*>::non_const_value_type value_type;
    
        ReduceMin(const Kokkos::View<const double*>& x) : x_ (x) {}
    
        typedef Kokkos::View<const double*>::size_type size_type;
        
        KOKKOS_INLINE_FUNCTION void
        operator() (const size_type i, value_type& update) const
        {
          if (x_(i) < update) {
    	update = x_(i);
          }
        }
    
        KOKKOS_INLINE_FUNCTION void
        join (volatile value_type& dst,
    	  const volatile value_type& src) const
        {
          if (src < dst) {
    	dst = src;
          }
        }
    
        KOKKOS_INLINE_FUNCTION void
        init (value_type& dst) const
        { // The identity under max is -Inf.
          dst= Kokkos::reduction_identity<value_type>::min();
        }
      };
    
      // Calcule un Fl
      Kokkos::View<Rdd*> 
      computeFl(const Kokkos::View<const Rd**>& Cjr,
    	     const Kokkos::View<const Rd*>& uj,
    	     const Kokkos::View<const double*>& kj) {
    
        const Kokkos::View<const unsigned int**>& face_cells = m_connectivity.faceCells();
    
        const Kokkos::View<const unsigned short*> face_nb_cells
          = m_connectivity.faceNbCells();
    
        const Kokkos::View<const unsigned short**> face_cell_local_face
          = m_mesh.connectivity().faceCellLocalFace();
    
        const Kokkos::View<const double*>& Vl = m_mesh_data.Vl();
    
        Kokkos::parallel_for(m_mesh.numberOfFaces(), KOKKOS_LAMBDA(const int& l) {
            Rdd sum = zero;
    	double sum2 = 0.;
    	for (int j=0; j<face_nb_cells(l); ++j) {
    	  int cell_here = face_cells(l,j);
    	  int local_face_number_in_cell = face_cell_local_face(l,j);
    	  sum -= tensorProduct(uj(cell_here, local_face_number_in_cell), Cjr(cell_here, local_face_number_in_cell));
    	  sum2 += kj(cell_here);
    	}
    
    	// k = x
    	                      
    	m_Fl(l) = ((sum2*0.5)/Vl(l))*sum;
    
            // k = 2
    	 
    	//m_Fl(l)= (2./Vl(l))*sum;
    
          });
    
        return m_Fl ;
      }
    
      // Calcule un Gl
      Kokkos::View<Rd*>  
      computeGl(const Kokkos::View<const Rd*>& uj,
    	    const Kokkos::View<const Rdd*>& Fl) {
    
        const Kokkos::View<const unsigned int**>& face_cells = m_connectivity.faceCells();
    
        const Kokkos::View<const unsigned short*> face_nb_cells
          = m_connectivity.faceNbCells();
    
        const Kokkos::View<const unsigned short**> face_cell_local_face
          = m_mesh.connectivity().faceCellLocalFace();
    
        Kokkos::parallel_for(m_mesh.numberOfFaces(), KOKKOS_LAMBDA(const int& l) {
            Rd sum = zero;
    	for (int j=0; j<face_nb_cells(l); ++j) {
    	  int cell_here = face_cells(l,j);
    	  int local_face_number_in_cell = face_cell_local_face(l,j);
    	  sum += uj(cell_here, local_face_number_in_cell);
    	}                
    	 
    	m_Gl(l) =  0.5*Fl(l)*sum;
    
          });
    
        return m_Gl ;
      }
    
      // Calcule la liste des inverse d'une liste de matrices 
      // (pour l'instant, juste 1x1)
      void inverse(const Kokkos::View<const Rdd*>& A,
    	       Kokkos::View<Rdd*>& inv_A) const {
        Kokkos::parallel_for(A.size(), KOKKOS_LAMBDA(const int& r) {
    	inv_A(r) = Rdd{1./(A(r)(0,0))};
          });
      }
    
      // Calcule la liste des inverses d'une liste de reels
      void inverse(const Kokkos::View<const double*>& x,
    	       Kokkos::View<double*>& inv_x) const {
        Kokkos::parallel_for(x.size(), KOKKOS_LAMBDA(const int& r) {
    	inv_x(r) = 1./x(r);
          });
      }
    
    
      // Enchaine les operations pour calculer les flux (Fjr et Gjr) pour
      // pouvoir derouler le schema
      KOKKOS_INLINE_FUNCTION
      void computeExplicitFluxes(const Kokkos::View<const Rd*>& uj,
    			     const Kokkos::View<const Rd**>& Cjr,
    			     const Kokkos::View<const double*>& kj) { 
        Kokkos::View<Rdd*> Fl  = m_Fl ; 
        Fl  = computeFl (Cjr, uj, kj);
        Kokkos::View<Rd*> Gl  = m_Gl ; 
        Gl  = computeGl (uj, Fl );
      }
    
      Kokkos::View<Rdd*> m_Fl;
      Kokkos::View<Rd*> m_Gl;
    
    public:
      FiniteVolumesDiffusion(MeshData& mesh_data,
    			 UnknownsType& unknowns)
        : m_mesh_data(mesh_data),
          m_mesh(mesh_data.mesh()),
          m_connectivity(m_mesh.connectivity()),
          m_Fl("Fl", m_mesh.numberOfFaces()), 
          m_Gl("Gl", m_mesh.numberOfFaces())
      {
        ;
      }
    
      // Calcule une evaluation du pas de temps verifiant le CFL parabolique
      // Utilise la reduction definie dans la structure ReduceMin.
      KOKKOS_INLINE_FUNCTION
      double diffusion_dt(const Kokkos::View<const double*>& rhoj,
    		      const Kokkos::View<const double*>& kj) const {
    
        Kokkos::View<double*> dt_j("dt_j", m_mesh.numberOfCells());
    
        const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr();
    
        const Kokkos::View<const double*>& Vl = m_mesh_data.Vl();
    
        const Kokkos::View<const double*>& Vj = m_mesh_data.Vj();
    
        const Kokkos::View<const unsigned int**>& cell_faces = m_connectivity.cellFaces();
    
        const Kokkos::View<const unsigned short*> cell_nb_faces
          = m_connectivity.cellNbFaces();
    
        const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
    
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	double minVl = std::numeric_limits<double>::max();
    	for (int ll=0; ll<cell_nb_faces(j); ++ll) {
    	  minVl = std::min(minVl, Vl(cell_faces(j, ll)));
    	}
    	//k=2 => (kj(j+1) + 2*kj(j) + kj(j-1)) = 8
           	// dt_j[j]= 0.5*rhoj(j)*Vj(j)*(2./8.)*minVl;
    
    	// k=x
    	double sum = 0.;
    	for (int m = 0; m < cell_nb_nodes(j); ++m) {
    	  sum += kj(cell_nodes(j,m));
    	}
    
    	 dt_j[j]= 0.5*rhoj(j)*Vj(j)*(1./(2.*kj(j) + sum))*minVl;
    	
          });
        
        // for (int j=0; j<m_mesh.numberOfCells(); ++j) {
        //   std::cout << "dt_j[" << j << "]=" << dt_j[j] << '\n';
        // }
        double dt = std::numeric_limits<double>::max();
        Kokkos::parallel_reduce(m_mesh.numberOfCells(), ReduceMin(dt_j), dt);
        // std::cout << dt << std::endl;
    
        // std::exit(0);
        return dt;
      }
    
      // Avance la valeur des inconnues pendant un pas de temps dt 
      void computeNextStep(const double& t, const double& dt,
    		       UnknownsType& unknowns)
      {
        Kokkos::View<double*> rhoj = unknowns.rhoj();
        Kokkos::View<Rd*> uj = unknowns.uj();
        Kokkos::View<Rd*> Sj = unknowns.Sj();
        Kokkos::View<double*> Ej = unknowns.Ej();
    
        Kokkos::View<double*> ej = unknowns.ej();
        Kokkos::View<double*> gammaj = unknowns.gammaj();
    
        const Kokkos::View<const double*> kj = unknowns.kj();
    
        const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
        const Kokkos::View<const double*> Vj = m_mesh_data.Vj();
        const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr();
    
        // Calcule les flux
        computeExplicitFluxes(uj, Cjr, kj);
    
        const Kokkos::View<const Rdd*> Fl  = m_Fl ;
        const Kokkos::View<const Rd *> Gl  = m_Gl ;
        
        const Kokkos::View<const unsigned short*>& cell_nb_faces
          = m_connectivity.cellNbFaces();
    
        const Kokkos::View<const unsigned int*[2]>& cell_faces
          = m_connectivity.cellFaces();
    
        // Mise a jour de la vitesse et de l'energie totale specifique
        const Kokkos::View<const double*> inv_mj = unknowns.invMj();
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	Rd momentum_fluxes = zero;
    	double energy_fluxes = 0;
    	int l = 0.;
    	for (int R=0; R<cell_nb_faces(j); ++R) {
    	  l = cell_faces(j,R);
    	  momentum_fluxes +=  Fl(l)*Cjr(j,R);
    	  energy_fluxes   += (Gl(l), Cjr(j,R));
    	}
    	uj[j] += std::exp(-t)*(dt*inv_mj[j])*Vj(j)*Sj(j) + (dt*inv_mj[j]) * momentum_fluxes;
    	//uj[j] += (dt*inv_mj[j]) * momentum_fluxes;
           	Ej[j] += (dt*inv_mj[j]) * energy_fluxes;
          });
    
        // Calcul de e par la formule e = E-0.5 u^2 
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	ej[j] = Ej[j] - 0.5 * (uj[j],uj[j]);
          });
    
        // met a jour les quantites (geometriques) associees au maillage
        m_mesh_data.updateAllData();
    
        // Calcul de rho avec la formule Mj = Vj rhoj
        const Kokkos::View<const double*> mj = unknowns.mj();
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	rhoj[j] = mj[j]/Vj[j];
    
          });
      }
    
      // Calcul erreur entre solution analytique et solution numerique en norme L2
      // (quand la solution exacte est connue)
    
      double error_L2(UnknownsType& unknowns) {
    
        Kokkos::View<Rd*> uj = unknowns.uj();
    
        const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
    
        double pi = 4.*std::atan(1.);
        double erreur = 0.;
        double exacte = 0.;
        for (size_t j=0; j<m_mesh.numberOfCells(); ++j) {
          exacte = std::sin(pi*xj[j][0])*std::exp(-0.2); // solution exacte
          erreur += (exacte - uj[j][0])*(exacte - uj[j][0]);
        }
        erreur = std::sqrt(erreur);
        return erreur;
      }
    
      double error_Linf(UnknownsType& unknowns) {
    
        Kokkos::View<Rd*> uj = unknowns.uj();
    
        const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
    
        double pi = 4.*std::atan(1.);
        double exacte = std::sin(pi*xj[0][0])*std::exp(-0.2); 
        double erreur = std::abs(exacte - uj[0][0]);
    
        for (size_t j=1; j<m_mesh.numberOfCells(); ++j) {
          exacte = std::sin(pi*xj[j][0])*std::exp(-0.2); 
    
          if (std::abs(exacte - uj[j][0]) > erreur) {
    	erreur = std::abs(exacte - uj[j][0]);
          }
    
        }
    
        return erreur;
      }
    
      
    };
    
    #endif // FINITE_VOLUMES_DIFFUSION_HPP